Commercial, professional and domestic refrigeration

• Commercial
 – 90 million commercial refrigerated systems worldwide
 – 477,000 supermarkets
 – 45% energy for refrigeration in supermarkets

• Domestic
 – 1.5 billion appliances
Commercial, professional and domestic refrigeration

Commercial – supermarkets, retail (also beverage coolers, vending machines, water coolers, drinks fountains)

Professional – catering/kitchens

Domestic – home
Commercial, professional and domestic refrigeration

- **Commercial**
 - Majority of systems in use are plug-in (integral)
 - Usually <3 kW
 - Large supermarket system operate from a remote refrigerant plant

- **Professional**
 - Majority plug in systems
 - 300 W to 1-2 kW

- **Domestic**
 - Almost universally plug-in
 - 20-150 W
Commercial, professional and domestic refrigeration

- Control of temperature begins to be an issue

Temperature performance

- Large variations in performance of similar equipment

Mean temperature (°C) for refrigerators

Mean temperature (°C) for freezers
Emissions - direct

- Refrigerant emissions:
 - Commercial
 - Remote 3% at very best up to 20-30%/year
 - Integral <1%/year
 - Professional
 - Little information on professional
 - Similar production methods
 - 0.5-3%/year
 - Domestic
 - 0.1-0.5%/year
Emissions - direct

• Refrigerants:
 – Commercial
 • Traditionally high GWP refrigerants
 • Move to CO$_2$ (R744), HFOs and lower GWP alternatives in remote plant
 • HCs in small plant or HFO/HFO blend refrigerants
 – Professional
 • Move to HCs with low GWP
 – Domestic
 • 35-40% HCs (increasing, 70% by 2020)
Emissions

• Food loss:
 – Often related to lack of refrigeration

• Food waste:
 – Refrigeration extends storage life of food
 – Reducing storage temperature from 7°C to 4°C extend storage life by ~50%
 – Could save UK £162.9 m of waste annually (270,000 tonnes CO$_2$e)
 – Additional savings if include foods which are not always refrigerated and remove others which do not benefit from refrigeration
 – Costs and emissions associated with increased fridge energy consumption lower

Emissions - indirect

- Energy consumption - wide range in performance
Developments and perspectives

• Opportunities to reduce energy usage
 – Often prevented by cost (emphasis on initial cost rather than lifetime)
 – Large number of options available
 – Loss in sales (e.g. doors on commercial cabinets)
 – Energy labelling may have impact (has already reduced energy used by domestic refrigerators by ~50%)

• Opportunities to reduce direct emissions
 – Safety of HC and A2L refrigerants

• Number of novel systems (magnetocaloric, electrocaloric, acoustic) under development or close to market, suitable for plug-in units
Thank you for your attention
Prof Judith Evans
Email: j.a.evans@lsbu.ac.uk/j.a.evans@rdandt.co.uk