ORNL – LCCP: An extensible Framework for Life Cycle Climate Performance based Design of Energy Systems

Vikrant Aute (<u>vikrant@umd.edu</u>)
Omar Abdelaziz (<u>abdelazizoa@ornl.gov</u>)

Contents

- Background
- Project Objectives
- ORNL LCCP Framework
- Demo

Emissions Due to HVAC&R

- Emissions occur throughout lifetime
 - Leakages, service & disposal
 - Operation
 - Manufacturing & transport
- Mitigation
 - Low/No GWP alternatives
 - Efficient recovery/reuse
 - Efficient systems
 - Systems approach towards design

Life Cycle Climate Performance

- Total CO2 equivalent global warming impact over total lifetime of the system
- Comprised of
 - Direct emissions: refrigerant released
 - Indirect emissions
 - Energy consumption over lifetime and recycling
 - Power input during operation, transport, processing
 - Manufacturing of systems/components, recycling
- Units: kg CO2 /kg OR CO2e

LCCP History

ORNL

- Life cycle analysis for alternative refrigerants
- Total Equivalent Warming Impact (TEWI)
- Papasavva (1997)
 - Expanded TEWI to Life Cycle Warming Impact (LCWI)
- Andersen (1999)
 - Montreal Protocol, Technology & Economic Assessment Panel
 - Coined: Life Cycle Climate Performance (LCCP)

LCCP Software Efforts

- GREEN-MAC LCCP (2004)
 - Automotive
 - Peer reviewed, contribution from 50 experts,
 - http://www.epa.gov/cppd/mac/
- AHRTI (2011)
 - October 2011, AHRTI Report No. 09003-01
 - Residential heat pumps
- ORNL LCCP (2012)
 - Project at CEEE/UMD funded by DOE/ORNL

Future Energy Systems

- Engineered for efficiency, performance, cost,..., LCCP,...
- LCCP needs to be one of the design metric
- Should be one of the objectives or constraints during design optimization

Challenges

- Standardized LCCP calculation
- Bring diverse set of analysis tools onto a single platform – without exposing any IP
 - Can serve as a platform or component of a bigger platform
- System (refrigeration vs. A/c) independent
- Transparent calculations, peer-reviewed
- Input uncertainty
- Standardized outputs

ORNL LCCP Project

- Open Source LCCP Evaluation & Design tool
- Funded by Oak Ridge National Laboratory (ORNL) & CRADA (Honeywell)

Project Team

- Oak Ridge National Labs (ORNL)
 - Omar Abdelaziz (<u>abdelazizoa@ornl.gov</u>)
 - Ed Vineyard
 - Brian Fricke (<u>frickeba@ornl.gov</u>)
- University of Maryland (UMD)
 - Vikrant Aute (<u>vikrant@umd.edu</u>)
 - Reinhard Radermacher
 - Jyothi Vinjumur
 - Mohamed Beshr

ORNL LCCP Objectives

- Design Tool
- Build on existing methodologies
- Extensible framework for LCCP design
 - Can be coupled with existing system/load calculations tools
- Wide range of applications
 - Supermarket refrigeration, heat pumps,...
- Desktop and Web/Cloud based interfaces
- Open Source

LCCP

Direct Emissions

- Regular emissions
- Irregular emissions
- Service emissions
- End-of-life emission
- Leakage during production & transport

Indirect Emissions

- Energy consumption of the system
- Energy to make system/components
- Energy to produce refrigerant
- Energy to transport
- Energy for end-of-life, recycling/recovery of system and refrigerant

^{*} Also included are place-holders for user-defined emissions

ORNL LCCP Framework

Components will be developed as "Open Source". Other components can be open-source or proprietary

LCCP Inputs

System

 Charge, lifetime, annual leak rate, accident & service leak rates, service intervals, power consumption

Refrigerant

 GWP, energy and leakage during [manufacturing, transport, and recycling]

Components

 Mass, energy required for [manufacturing, transport, recycling]

Application

Weather, power-plant emissions, renewable factor

* Also included are place-holders for user-defined inputs; Energy ≡ CO2e

Role of System Simulation Tool

- Indirect emissions: 20%-80% of total
- LCCP approach involves hourly energy consumption calculations, 8760 evaluations
- Robust system simulation tool
 - For novel systems
 - Fast & flexible
 - Allow system design/optimization with LCCP as one of the criterion

System Simulation

- Given: Ambient conditions and load profile, compute hourly power consumption
- System simulation invoked via "exe" file
- I/O through text files
- Accounts for multiple cycles in a system
- Allows for parametric studies
 - Change system and component level input

System Simulation - VapCyc

- Support for VapCyc
 - Tool for analyzing VCC
 - Support for user-defined refrigerant mixtures and detailed component design
- Implementation
 - Dynamic curve fitting approach for capacity and power consumption as a function of ambient conditions
 - Significant computational savings

Emission/Weather Data

- TMY3 Database
- 16 pre-defined cities
- User can add additional cities
 - Weather data file
 - Emissions data file

Load Integration

- Hourly load profile files (txt)
- Integration with EnergyPlus
- Option to by-pass simulation tool and read power consumption from file

ORNL LCCP Web App

- http://lccp.umd.edu/ornllccp/
- Simplified application for evaluating LCCP of supermarket refrigeration systems
- Commonly used medium and low temperature applications
- Pre-defined cities and load profile(s)

Challenges

- System comparison based on total emissions
 - Impact of individual contributions
- Where to get input data?
 - Non-profit, industry collaboration

Status

- Public BETA available in November 2012
- http://lccp.umd.edu/ornllccp
 - Web version, Desktop version download
 - Support forums

Future Directions -

- Refine calculations
 - Request for comments
 - Multiyear charge effects
- Out of box support for other systems
 - Residential heat pumps
 - Secondary loop systems
- Simplified input
 - Work with user input performance data
- Uncertainty/Sensitivity Analysis

ORNL LCCP – Web Version Demo

http://lccp.umd.edu/ornllccp

LCCP Desktop Version Demo

Thank You

